Controlling the growth of nanoparticles produced in a high power pulsed plasma

Controlling the growth of nanoparticles produced in a high power pulsed plasma
Author :
Publisher : Linköping University Electronic Press
Total Pages : 89
Release :
ISBN-10 : 9789176854662
ISBN-13 : 9176854663
Rating : 4/5 (663 Downloads)

Book Synopsis Controlling the growth of nanoparticles produced in a high power pulsed plasma by : Rickard Gunnarsson

Download or read book Controlling the growth of nanoparticles produced in a high power pulsed plasma written by Rickard Gunnarsson and published by Linköping University Electronic Press. This book was released on 2017-12-21 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology can profoundly benefit our health, environment and everyday life. In order to make this a reality, both technological and theoretical advancements of the nanomaterial synthesis methods are needed. A nanoparticle is one of the fundamental building blocks in nanotechnology and this thesis describes the control of the nucleation, growth and oxidation of titanium particles produced in a pulsed plasma. It will be shown that by controlling the process conditions both the composition (oxidationstate) and size of the particles can be varied. The experimental results are supported by theoretical modeling. If processing conditions are chosen which give a high temperature in the nanoparticle growth environment, oxygen was found to be necessary in order to nucleate the nanoparticles. The two reasons for this are 1: the lower vapor pressure of a titanium oxide cluster compared to a titanium cluster, meaning a lower probability of evaporation, and 2: the ability of a cluster to cool down by ejecting an oxygen atom when an oxygen molecule condenses on its surface. When the oxygen gas flow was slightly increased, the nanoparticle yield and oxidation state increased. A further increase caused a decrease in particle yield which is attributed to a slight oxidation ofthe cathode. By varying the oxygen flow, it was possible to control the oxidation state of the nanoparticles without fully oxidizing the cathode. Pure titanium nanoparticles could not be produced in a high vacuum system because oxygen containing gases such as residual water vapour have a profound influence on nanoparticle yield and composition. In an ultrahigh vacuum system titanium nanoparticles without significantoxygen contamination were produced by reducing the temperature of the growth environment and increasing the pressure of an argon-helium gas mixture within whichthe nanoparticles grew. The dimer formation rate necessary for this is only achievable at higher pressures. After a dimer has formed, it needs to grow by colliding with a titanium atom followed by cooling by collisions with multiple buffer gas atoms. The condensation event heats up the cluster to a temperature much higher than the gas temperature, where it is during a short time susceptible to evaporation. When the clusters’ internal energy has decreased by collisions with the gas to less than the energy required to evaporate a titanium atom, it is temporarily stable until the next condensation event occurs. The temperature difference by which the cluster has to cool down before it is temporarily stable is exactly as many kelvins as the gas temperature.The addition of helium was found to decrease the temperature of the gas, making it possible for nanoparticles of pure titanium to grow. The process window where this is possible was determined and the results presented opens up new possibilities to synthesize particles with a controlled contamination level and deposition rate.The size of the nanoparticles has been controlled by three means. The first is to change the electrical potential around the growth zone, which allows for size (diameter) control in the order of 25 to 75 nm without influencing the oxygen content of the particles. The second means is by increasing the pressure which decreases the ambipolar diffusion rate of the ions resulting in a higher growth material density. By doing this, the particle size can be increased from 50 to 250 nm, however the oxygen content also increases with increasing pressure when this is done in a high vacuum system. The last means of size control was by adding a helium flow to the process where higher flows resulted in smaller nanoparticle sizes. When changing the pressure in high vacuum, the morphology of the nanoparticles could be controlled. At low pressures, highly faceted near spherical particles were produced. Increasing the pressure caused the formation of cubic particles which appear to ‘fracture’ at higher pressures. At the highest pressure investigated, the particles became poly-crystalline with a cauliflower shape and this morphology was attributed to a lowad atom mobility. The ability to control the size, morphology and composition of the nanoparticles determines the success of applying the process to manufacture devices. In related work presented in this thesis it is shown that 150-200 nm molybdenum particles with cauliflower morphology were found to scatter light in which made them useful in photovoltaic applications, and the size of titanium dioxide nanoparticles were found to influence the selectivity of graphene based gas sensors.


Controlling the growth of nanoparticles produced in a high power pulsed plasma Related Books

Controlling the growth of nanoparticles produced in a high power pulsed plasma
Language: en
Pages: 89
Authors: Rickard Gunnarsson
Categories:
Type: BOOK - Published: 2017-12-21 - Publisher: Linköping University Electronic Press

DOWNLOAD EBOOK

Nanotechnology can profoundly benefit our health, environment and everyday life. In order to make this a reality, both technological and theoretical advancement
Gas-Phase Synthesis of Nanoparticles
Language: en
Pages: 416
Authors: Yves Huttel
Categories: Technology & Engineering
Type: BOOK - Published: 2017-06-19 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

The first overview of this topic begins with some historical aspects and a survey of the principles of the gas aggregation method. The second part covers modifi
Nanomaterials
Language: en
Pages: 863
Authors: R. Praveen Kumar
Categories: Science
Type: BOOK - Published: 2021-05-19 - Publisher: Academic Press

DOWNLOAD EBOOK

Nanomaterials: Application in Biofuels and Bioenergy Production Systems looks at how biofuels and bioenergy can be part of the "sustainable" solution to the wor
Encyclopedia of Plasma Technology - Two Volume Set
Language: en
Pages: 2883
Authors: J. Leon Shohet
Categories: Technology & Engineering
Type: BOOK - Published: 2016-12-12 - Publisher: CRC Press

DOWNLOAD EBOOK

Technical plasmas have a wide range of industrial applications. The Encyclopedia of Plasma Technology covers all aspects of plasma technology from the fundament
Synthesis of Nanoparticles and Nanomaterials
Language: en
Pages: 216
Authors: Zhypargul Abdullaeva
Categories: Technology & Engineering
Type: BOOK - Published: 2017-05-03 - Publisher: Springer

DOWNLOAD EBOOK

This book covers biological synthesis approaches for nanomaterials and nanoparticles, including introductory material on their structure, phase compositions and